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Abstract: Cybercriminals are becoming increasingly intelligent and aggressive, making them more

adept at covering their tracks, and the global epidemic of cybercrime necessitates significant efforts

to enhance cybersecurity in a realistic way. The COVID-19 pandemic has accelerated the cybercrime

threat landscape. Cybercrime has a significant impact on the gross domestic product (GDP) of every

targeted country. It encompasses a broad spectrum of offenses committed online, including hacking;

sensitive information theft; phishing; online fraud; modern malware distribution; cyberbullying;

cyber espionage; and notably, cyberattacks orchestrated by botnets. This study provides a new

collaborative deep learning approach based on unsupervised long short-term memory (LSTM) and

supervised convolutional neural network (CNN) models for the early identification and detection

of botnet attacks. The proposed work is evaluated using the CTU-13 and IoT-23 datasets. The

experimental results demonstrate that the proposed method achieves superior performance, obtaining

a very satisfactory success rate (over 98.7%) and a false positive rate of 0.04%. The study facilitates

and improves the understanding of cyber threat intelligence, identifies emerging forms of botnet

attacks, and enhances forensic investigation procedures.

Keywords: artificial intelligence; cyber threat intelligence; digital forensics investigation; cyber

criminality; cybersecurity analytics

1. Introduction

Today’s top elite cyberattackers are competing in ingenuity to penetrate critical infras-
tructure, to conduct cyber espionage, and to exfiltrate sensitive data while covering their
tracks. They use a variety of advanced and furtive techniques, scanning and exploiting
numerous cyber vulnerabilities, creating hidden backdoors, and giving rise to several
cyber threats. For instance, in 2017, NotPetya [1] affected several multinational companies
by shutting down hundreds of thousands of machines in just ten minutes, resulting in
some suffering losses of over USD 300 million. According to the Cyberwarfare Special
Report [2], cybercrime is predicted to reach USD 10.5 trillion annually by 2025, which is
exponentially higher than the damage inflicted by natural disasters in a year. According to
Symantec [3], the top ten biggest cyber threats are phishing (22%), malware (20%), cyberat-
tacks (to disrupt) (13%), cyberattacks for stealing money (12%), fraud (10%), cyberattacks
for stealing IP (8%), spam (6%), internal attacks (5%), natural disasters (2%), and espionage
(2%). According to the FBI [4], the Internet Crime Complaint Center reported that the
volume of complaints in 2021 was 847,376, with losses of USD 6.9 billion. According to
McAfee [5], up to 1% of the world’s GDP is now being lost to cybercrime. In addition, the
cost of cybercrime to the global economy has increased by more than 50% in two years.
Figure 1 presents the estimated average cost of cybercrime [6]:
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Figure 1. The average cost of cybercrime.

Addressing cybercrime requires substantial research in cybersecurity analytics, cyber
threat intelligence, and digital forensics. Digital forensics (DF) is a branch of forensic
science that involves the recovery and investigation of digital devices and is often related
to cybercrime. Digital forensic investigators use a variety of techniques to recover evidence
from seized or damaged electronic devices in order to help identify criminals and to solve
crimes [7]. Forensic analysis techniques can extract hidden and encrypted information
using voiceprint analysis, darknet analysis, cryptanalysis techniques, and cybersecurity
analytics. Cybersecurity analytics (CA) refers to the application of analytical techniques
and technologies to analyze and interpret vast amounts of data in order to identify and
respond to cybersecurity threats and risks. Cyber threat intelligence (CTI) refers to the
gathered and analyzed information and knowledge about potential cyber threats and
adversaries. It involves gathering intelligence, and evaluating and interpreting data from
open-source intelligence (OSINT), the dark web, and incident reports so as to identify
cyber threats and their capabilities, intentions, and potential targets. The technical aspects
of these investigations are divided into several branches related to the types of digital
devices involved: system forensics [8], database forensics [9], email forensics [10], malware
forensics [11], memory forensics [10], file system forensics [8], mobile devices forensics [10],
network forensics [8,10], digital image forensics [8], web forensics [8], cloud forensics [8],
and IoT forensics [12]. Figure 2 illustrates the digital forensics investigation process.

Identification Collection

Examination

Evaluation

Repport

Digital Forensics

Techniques

Figure 2. Procedure of digital forensics techniques.
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For instance, in the field of IoT forensics, investigation mandates the inspection of all
traffic forms that are suspected of demonstrating botnet behavior.

Given the successful application of deep learning methods in various real-world
scenarios, the LSTM-CNN model is proposed for the early detection of botnet attacks. The
key contributions of this paper are as follows:

1. A deep learning model based on LSTM-CNN is proposed for investigating botnet
traffic detection, with a focus on indicators of compromise, to enhance digital foren-
sics and cyber threat intelligence, thereby helping to provide effective responses to
cybercrime.

2. By leveraging deep learning techniques, the proposed model has the potential to
adapt to changing attack patterns and to learn intricate features automatically, thereby
demonstrating adaptability to evolving advanced botnet techniques that evade detec-
tion.

3. This study aims to discover hidden patterns and correlations in botnet activities that
may not be apparent using traditional approaches. This is crucial in enhancing cyber
threat intelligence and in facilitating proactive forensic measures.

The remainder of this paper is organized as follows: Section 2 emphasizes the most
common related work for botnet detection. Section 3 presents our proposed work, outlining
our methodology for enhancing digital forensics techniques using DL models. The experi-
mental results are described in Section 4, followed by the discussions. Finally, Section 5
provides a conclusion and perspectives.

2. Related Work

In the 21st century, the rise of advanced malware and the exploitation of zero-day
vulnerabilities have become major cybersecurity concerns, affecting diverse sectors. The
pervasive nature of these threats has drawn considerable attention from security experts,
specialists, and researchers. As a result, numerous researchers are actively working towards
finding effective solutions to combat these pressing issues.

In this research study, our focus lies in investigating IoT botnets, and several related
studies are examined. A notable contribution is presented in Reference [13], which in-
troduced a convolutional neural network (CNN)-based approach for the detection and
classification of IoT botnets. Ge et al. recently put forth a study [14] employing deep
learning (DL) techniques for intrusion detection in IoT networks. Their proposed model
utilizes feed-forward neural networks (FNN) for the binary and multi-class classification
of diverse attacks targeting IoT devices, employing the Bot-IoT dataset; however, while
the suggested solution yielded satisfactory outcomes overall, the authors acknowledged
the challenges encountered during the evaluation process and offered suggestions for
potential enhancements. In Reference [15], the authors put forth a detection model that
combines a bidirectional recurrent long-term memory neural network (BLSTM-RNN) with
word-embedding (WE) techniques. Similarly, another study on botnet detection utilizing
deep learning (DL) is presented in Reference [16]. In this research, an extensive set of 650
experiments was conducted on a substantial dataset of 83 GB, which was generated by
merging existing datasets containing botnet and peer-to-peer (P2P) data traffic. The primary
objective of this investigation was to assess the ability of DL to identify known botnets,
including Zeus, Storm, Waledac, and ZeroAccess, and to potentially replace traditional
detection methods reliant on network statistics and feature engineering.

Popoola et al. [17] presented a detection algorithm that relies on deep recurrent neural
networks (DRNN). Their algorithm was evaluated using the Bot-IoT dataset, and the
results were remarkable. Hegde et al. [18] directed their attention towards the identification
of botnets through the implementation of multiple machine learning and deep learning
classifiers. The IoT-23 dataset, exclusively comprising botnet data, along with benign data
captured in a controlled test environment, served as their primary data sources, using
a combination of four malware captures and three benign data captures solely from the
IoT-23 dataset [19].
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In the study conducted by Garcia et al. [20], the authors examined the labeling process
employed in the CTU13 dataset. They emphasized that the labeling process guarantees the
accurate classification of flows as normal or botnet. However, it was noted that flows labeled
as Background may include traffic from both categories. Consequently, each CTU13 dataset
contains an unlabeled segment that necessitates additional investigation [21]. Geetha K.
and Brahmananda S.H. [22] directed their efforts towards developing a method to safe-
guard healthcare IoT devices against botnet attacks. The proposed algorithm incorporates
bidirectional long short-term memory (BLSTM). This outcome demonstrated the capability
of the algorithm in accurately predicting and mitigating botnet attacks within healthcare
IoT networks, showcasing its potential in enhancing the security of such systems.

Table 1 is a summary encompassing recent research endeavors that primarily concen-
trate on IoT botnet forensics and detection:

Table 1. IoT botnet forensics- and detection-related work.

Work Year Journal Method Pros Cons

[23] 2020 High Speed Networks ML
Effective in detecting

patterns and anomalies
May require a large labled

dataset

[24] 2020 Applied Sciences ML, DL
Capable of learning complex

patterns
High computational

complexity

[25] 2020
Security and Communication

Networks
ML

Can identify hidden patterns
and correlations

Limitations in handlings new
attacks

[26] 2021 IEEE Internet of Things Federated DL
Detection of zero-day botnet

attacks
Synchronization and

communication challenges

[27] 2021 SN Computer Science DL Can learn intricate features
Requires large amounts of

labled data

[28] 2022
Ambient Intelligence and
Humanized Computing

Game theory, DL
Models the strategic
behavior of attackers

Requires extensive
computational resources

[29] 2022 IEEE INFOCOM Extreme learning Fast and efficient learning
Requires fine-tuning for

optimal performance

[30] 2023 Computers & Security BiGRU-RNN
Improved accuracy in

detecting IoT botnet attacks
Has increased complexity

and resources requirements

[31] 2023 Computer Science SVM Adaptable to dynamic botnet
Requires extensive

computation resources

[32] 2023
Future Generation Computer

Systems
Active learning

Minimizes the labeling cost
for the IoT botnet detection

Did not explore the
implications and relation of

specific features

Despite the presence of numerous botnet detection techniques, a research gap persists
in the development of precise and efficient models capable of effectively addressing both
the spatial and temporal aspects of botnet activities. Existing methods predominantly focus
on the analysis of network traffic, leaving a dearth of research that explores the intricate
dynamics of botnet behavior. This research gap highlights the need for comprehensive
exploration of the effectiveness of AI models in mitigating the challenges posed by the
dynamic botnet behavior and zero-day botnet attacks.

Moreover, in light of the escalating proliferation of insecure IoT devices, botnet attacks
have emerged as a significant threat to internet security [33]. Numerous machine-learning-
driven solutions have been put forth to detect diverse forms of botnet attacks. The effective-
ness of these solutions predominantly relies on the selection of features employed to train
the deep learning models. It is crucial to carefully consider the choice of features as they
directly impact the performance and accuracy of the detection mechanisms. Nonetheless,
the process of selecting features solely from a specific dataset imposes limitations on the ca-
pability of deep learning models to effectively detect botnet attacks across diverse datasets,
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given the variations in botnet attack samples. In this study, we propose a collection of
universal features that can aid deep learning models in identifying various botnet attacks,
irrespective of the dataset used. Further investigation is necessary to ascertain the optimal
architectural design that can harness the strengths of both convolutional neural networks
(CNN) and long short-term memory (LSTM) networks, with the aim of constructing a more
robust and powerful botnet detection system.

3. Proposed Work

According to the Interpol Report 2021 [34], botnets are networks of compromised
machines used to automate large-scale campaigns, including DDoS attacks, phishing,
malware distribution, and data theft. Thus, detecting and mitigating botnet attacks is a
critical task for ensuring the security of cyberspace. However, traditional-method-based
botnet detection often relies on handcrafted features or rule-based approaches, which
may struggle to keep up with the evolving techniques employed by botnet operators.
Therefore, there is a need for advanced detection approaches that can effectively capture
the complex patterns and dynamics of botnet attacks. This research gap necessitates
investigating the effectiveness of the CNN-LSTM hybrid model in addressing the challenges
associated with botnet detection. The application of the proposed CNN-LSTM hybrid
model for botnet detection holds much research significance, such as enhanced detection
accuracy, adaptability to evolving advanced botnet techniques, efficient feature learning
and representation, comprehensive analysis of spatial and temporal contexts, real-time
detection, and proactive forensics investigation measures.

Our approach was developed using the Google Colab and TensorFlow frameworks
with the Python programming language. Python was chosen for its advantageous features,
including concise coding requirements, extensive availability of libraries and frameworks,
consistency, platform independence, a thriving community, and flexibility. These attributes
collectively contribute to the efficiency and effectiveness of the implementation instead.

CNN (convolutional neural network) is widely acknowledged as one of the most
successful deep learning methods. Its architecture comprises four key layers: the input
layer, convolutional layer, pooling layer, and fully connected layer. CNNs can be structured
as 1D CNN, 2D CNN, or 3D CNN, each catering to specific data types. For instance, 1D
CNN is primarily utilized for processing sequence data, 2D CNN is commonly employed
for image and text recognition tasks, while 3D CNN finds applications in medical image
analysis and video data recognition. In this study, we adopt the 1D CNN variant [35], given
its compatibility with the nature of our data.

CNN (convolutional neural network) is a deep learning architecture commonly used
for image and visual data analysis tasks. It is particularly effective in capturing spatial
relationships and extracting meaningful features. This is an explanation of the operational
principles behind a CNN model:

- Convolutional Layer: It consists of multiple learnable filters that slide across the
input. Each filter performs a dot product operation between its weights and a small
region of the input, producing a feature map. The feature map highlights important
patterns or features present in the input.

- Activation Function: After the convolutional operation, an activation function is
applied element-wise to the feature map. The activation function introduces non-
linearity into the network, allowing it to learn complex relationships between the
input and the extracted features.

- Pooling Layer: Following the activation function, a pooling layer is often applied.
Pooling reduces the spatial dimensions of the feature maps while retaining impor-
tant information. Pooling helps to reduce the number of parameters, to decrease
computational complexity, and to provide translational invariance.

- Convolution and Pooling Layers: The convolutional and pooling layers are typically
repeated multiple times in a CNN architecture to capture increasingly complex
and abstract features. This allows the network to learn hierarchical representa-
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tions of the input data, starting from simple low-level features and progressing to
high-level features.

- Flattening: After the convolutional and pooling layers have been applied, the
resulting feature maps are flattened into a one-dimensional vector. This flattening
operation reshapes the multi-dimensional feature maps into a single continuous
vector, which serves as the input to the subsequent fully connected layers.

- Fully Connected Layers: After flattening, fully connected layers are added to the net-
work. These layers are similar to those found in traditional neural networks, where
each neuron is connected to every neuron in the previous layer. Fully connected
layers perform non-linear transformations on the input data and are responsible for
making predictions based on the extracted features.

- Output Layer: The final layer of the CNN is the output layer. It typically consists
of one or more neurons, depending on the specific task. Figure 3 [36] shows the
schematic structure of the CNN model.

Figure 3. Structure of CNN model.

LSTM (long short-term memory) networks are a specialized variant of recurrent neural
networks that incorporate memory cells within hidden layers, enabling selective long-term
pattern retention. This characteristic makes LSTM networks well-suited for modelling
sequential data, which was the underlying motivation for our selection. Moreover, LSTM
networks are employed to capture the intricate dynamics inherent in human activity, further
highlighting their utility in analyzing complex temporal patterns [37]. It overcomes the
limitations of traditional RNNs by addressing the vanishing gradient problem, which
hampers the ability of the network to capture long-term dependencies in the data. The key
components of an LSTM model are memory cells, gates, and input/output connections.
This is an explanation of the operational principles behind an LSTM model:

- Input and Output: At each time step in the sequence, the LSTM receives an input
vector. The input can be a single value or a vector of multiple values. The LSTM
processes the input and produces an output vector at the same time step.

- Memory Cell: The memory cell is the core component of the LSTM. It maintains
and updates its internal state based on the current input, the previous state, and
the output of the previous time step. The memory cell has the ability to store and
carry information over long durations, allowing the model to capture dependencies
over time.

- Forget Gate: The forget gate determines which information from the previous state
should be forgotten or discarded. It takes the previous output and current input
as inputs, and using a sigmoid activation function, it produces a forget gate vector.
This vector selectively removes or keeps information from the previous state.

- Input Gate: The input gate determines which new information should be stored
in the memory cell. It takes the previous output and current input as inputs and
produces an input gate vector. Additionally, it generates a candidate vector, which
represents potential new information.

- Output Gate: The output gate decides what information from the memory cell
should be outputted. It takes the previous output and current input as inputs and
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produces an output gate vector using a sigmoid activation function. The memory
cell state is passed through a tanh activation function to squash the values, and then,
the output gate vector is applied to filter the values.

- Output: The output is generated by combining the filtered memory cell state with
the output gate vector. This output can be used for prediction or fed as an input to
the next time step in the sequence. Figure 4 [38] shows the schematic structure of
the LSTM model.

Figure 4. Structure of LSTM model.

Our model proposes the CNN-LSTM algorithm, which combines the benefits of
convolutional neural networks (CNNs) and long-term memory networks (LSTMs). The
CNN-LSTM algorithm utilizes a shallow CNN to extract basic features from the dataset.
The feature tensor extracted from the CNN is then converted into a feature matrix. Finally,
the rows of the feature matrix are fed into the LSTM network to combine them, facilitating
the implicit mapping of the entire dataset to the desired target.

Based on the evaluation of the CTU-13 and IoT-23 datasets, it is evident that the inclu-
sion of CNN significantly enhances the feasibility of the CNN-LSTM algorithm. However,
when it comes to the feature hybrid phase, LSTM emerges as the more effective component.
The test results strongly indicate the valuable role played by CNN in enhancing the overall
effectiveness of the algorithm, while highlighting the exceptional performance of LSTM in
the specific context of the feature hybrid phase. Additionally, the botnet detection accuracy
in IoT exceeds 90%.

Cyber investigators have been employing classification techniques grounded in ar-
tificial intelligence (AI), which are well-suited for effectively handling large volumes of
data and processing them rapidly. Drawing inspiration from this approach, our aim is
to propose a model founded on advanced AI techniques, specifically deep learning, to
identify botnets as a significant source of cyberattacks. The optimal utilization of 1D CNN
for both numeric and textual data, coupled with LSTM known for its memory capabilities,
forms the basis of our model. We applied this model to two datasets, namely CTU13
and IoT23, which encompass diverse scenarios. To ensure compatibility with the model’s
input requirements, we converted these datasets accordingly. Moreover, data balancing
techniques such as SMOTE were employed to augment the volume of data and to mitigate
any potential class imbalance. SMOTE (synthetic minority over-sampling technique) is a
data balancing technique widely employed in machine learning to tackle class imbalance
within datasets. This technique aims to address the scarcity of data in the minority class
by oversampling it. It operates by identifying the nearest neighbors of each minority data
point and by generating synthetic data points along the line segments that connect the
minority data point to its nearest neighbors. Extensive research has demonstrated the
effectiveness of SMOTE in enhancing the performance of machine learning models when
dealing with imbalanced datasets.
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3.1. CNN-LSTM Hybrid Model

In this section, we introduce the hybrid CNN-LSTM model that has been developed
by combining CNN and LSTM to enhance the investigation process. We provide a compre-
hensive explanation of how this model is constructed, including its inputs, outputs, and
the results obtained from our experiments.

3.1.1. Data Source

A comprehensive framework for developing an IoT botnet detection model has
been established. The framework encompasses the entire process, starting from defin-
ing the botnet datasets to the detection phase. This section focuses on the CTU-13 and
IoT-23 datasets utilized within the framework and provides further details regarding the
proposed framework.

CTU-13 Dataset

CTU-13 [39], also known as the Czech Technical University 13 dataset, is a dataset of
botnet traffic commonly used for cybersecurity research and analysis. It was created by the
Cyber Threat Intelligence Lab at the Czech Technical University in Prague. The purpose
of the dataset was to provide a large collection of real botnet traffic mixed with normal
and background traffic. The CTU-13 dataset consists of thirteen captures, each of which
represents a different botnet sample. In each scenario, we ran specific malware that used
multiple protocols and performed different actions. The CTU-13 dataset was designed to
provide researchers and practitioners with a realistic and diverse collection of network
traffic data for studying various aspects of cybersecurity. It focuses on capturing different
types of network traffic, including normal traffic as well as traffic generated by various
malware and botnet activities. The dataset was collected in a controlled environment using
a network of virtual machines. It includes both benign traffic and traffic generated by
13 different malware families, covering a wide range of malicious activities. Including
well-known ones such as Zeus, SpyEye, and Conficker, as well as lesser-known families.
Each malware family represents a different attack scenario, allowing researchers to analyze
and develop resilience investigation methods for specific types of malware. The table below
shows the characteristics of the botnet scenarios. Each scenario was captured in a PCAP
file that contains all packets of all three traffic types.

The PCAP files underwent processing to extract additional information, including
NetFlows and WebLogs. The extracted information was then converted into CSV format
using Wireshark. The resulting dataset possesses a multivariate and sequential data struc-
ture, comprising numerous instances and approximately 15 attributes. Given its size, not
all of the data was utilized for model training and testing. Instead, specific instances were
selected from the data folder to streamline model preparation.

However, using all instances could result in additional time consumption due to the
substantial volume of data that needs to be processed. The data attributes, along with their
corresponding details, are outlined below:

• StartTime: the start time for capturing data traffic;
• Dur: the duration of capture of data traffic or duration of the attack on the devices;
• Proto: the protocol used in the traffic;
• SrcAddr: the source IP address;
• Sport: the source port address;
• Dir: the direction of data flow and attack;
• DstAddr: the destination IP address;
• Dport: the destination port address;
• State: the state during the capture;
• dTos: the destination type of service;
• TotPkts: the total number of packets transferred or received during the capture;
• TotBytes: the total size of packets transferred or received during the capture in bytes;
• SrcBytes: size of packets from the source;
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• Label: attack tag (indicating whether it was a successful, background, or normal botnet
attack).

Table 2 illustrates the characteristics of the botnet scenarios.

Table 2. Characteristics of botnet scenarios.

Id IRC SPAM CF PS DDoS FF P2P US HTTP

1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X
7 X
8 X
9 X X X X

10 X X X
11 X X X
12 X
13 X X X

IoT-23 Dataset

IoT-23 [40] is a publicly available dataset commonly used for research and analysis in
the field of Internet of Things (IoT) security. It was created by the Stratosphere Laboratory
at the Czech Technical University in Prague. The IoT-23 dataset was developed to provide
researchers and practitioners with a comprehensive dataset for studying IoT security,
particularly in the context of botnet detection. It focuses on capturing network traffic data
generated by IoT devices and includes various botnet activities for analysis. The IoT-23
dataset includes instances of various botnet activities for each device type. These botnet
activities are injected into the network traffic data, representing different types of botnet
infections, command and control (C&C) communication, and malicious behavior exhibited
by compromised IoT devices. This allows researchers to study and develop detection
methods for IoT botnets. IoT-23 dataset’s focus on IoT devices reflects the growing security
concerns surrounding IoT deployments. By studying botnet detection on IoT devices using
this dataset, researchers can address the emerging security challenges and contribute to
enhancing the security and resilience of IoT ecosystems. The dataset’s relevance to real-
world IoT scenarios allows for practical and applicable findings. It consists of 23 captures
of malware running in IoT devices and three captures of benign IoT device traffic, thus
providing a large dataset of real and tagged IoT malware infections and benign IoT traffic
for researchers to develop machine learning algorithms. The research on this dataset was
funded by Avast. The malware was allowed to connect to the Internet.

The IoT-23 dataset is multi-tagged, and the tags belong to similar classes. The labels
represent different attack types, but the classes can be a combination of different attacks. For
instance, a label can be either C&C or PartOfAHorizontalPortScan, each having a different
meaning. In contrast, a class can be C&C-PartOfAHorizontalPortScan, which indicates that
both malware attacks are present for streams in that class. The specific details of the data
attributes are presented below:
• Attack: The infected device attempts to take advantage of a vulnerability in another

host as an attack.
• Benign: The connections do not show any suspicious or malicious activity.
• C&C: The infected device is connected to a Command & Control server.
• DDoS: The infected device executes a distributed denial of service (DDoS) attack.
• FileDownload: The infected device downloads a file.
• HeartBeat: The packets sent over this connection are used by the Command & Control

server to keep track of the infected host.



Sensors 2023, 23, 6302 10 of 21

• Mirai: The connections exhibit characteristics of a Mirai botnet.
• Okiru: The connections exhibit the characteristics of an Okiru botnet.
• PartOfAHorizontalPortScan: The connections are used to perform a horizontal port

scan to gather information for potential future attacks.
• Torii: The connections have the characteristics of a Torii botnet.

The following tables, namely Tables 3 and 4, provide a comprehensive overview of
each scenario present in the IoT-23 dataset, along with their fundamental characteristics:

Table 3. Scenarios in IoT-23 dataset.

Scenarios Type Capture Name Malware/Device Duration Number of Packets Total Flows

Scenario 1 Malicious CTU-IoT-Malware-Cap-34-1 Mirai 24,000 233,000 23,146,000
Scenario 2 Malicious CTU-IoT-Malware-Cap-43-1 Mirai 1000 82,000,000 67,321,810,000
Scenario 3 Malicious CTU-IoT-Malware-Cap-44-1 Mirai 2000 1,309,000 238,000
Scenario 4 Malicious CTU-IoT-Malware-Cap-49-1 Mirai 8000 18,000,000 5,410,562,000
Scenario 5 Malicious CTU-IoT-Malware-Cap-52-1 Mirai 24,000 64,000,000 19,781,379,000
Scenario 6 Malicious CTU-IoT-Malware-Cap-20-1 Torii 24,000 50,000 3,210,000
Scenario 7 Malicious CTU-IoT-Malware-Cap-21-1 Torii 24,000 50,000 3,287,000
Scenario 8 Malicious CTU-IoT-Malware-Cap-42-1 Trojan 8000 24,000 4,427,000
Scenario 9 Malicious CTU-IoT-Malware-Cap-60-1 Gagfyt 24,000 271,000,000 3,581,029,000

Scenario 10 Malicious CTU-IoT-Malware-Cap-17-1 Kenjiro 24,000 109,000,000 54,659,864,000
Scenario 11 Malicious CTU-IoT-Malware-Cap-36-1 Okiru 24,000 13,000,000 13,645,107,000
Scenario 12 Malicious CTU-IoT-Malware-Cap-33-1 Kenjiro 24,000 54,000,000 54,454,592,000

Table 4. Scenarios in IoT-23 dataset.

Scenarios Type Capture Name Malware/Device Duration Number of Packets Total Flows

Scenario 13 Malicious CTU-IoT-Malware-Cap-8-1 Hakai 24,000 23,000 10,404,000
Scenario 14 Malicious CTU-IoT-Malware-Cap-35-1 Mirai 24,000 46,000,000 10,447,796,000
Scenario 15 Malicious CTU-IoT-Malware-Cap-48-1 Mirai 24,000 13,000,000 3,394,347,000
Scenario 16 Malicious CTU-IoT-Malware-Cap-39-1 IRCBot 7000 73,000,000 73,568,982,000
Scenario 17 Malicious CTU-IoT-Malware-Cap-7-1 Linux,Mirai 24,000 11,000,000 11,454,723,000
Scenario 18 Malicious CTU-IoT-Malware-Cap-9-1 Linux,Hajime 24,000 6,437,000 6,378,294,000
Scenario 19 Malicious CTU-IoT-Malware-Cap-3-1 Muhstik 36,000 496,000 156,104,000
Scenario 20 Malicious CTU-IoT-Malware-Cap-1-1 Hide and Seek 112,000 1,686,000 1,008,749,000
Scenario 21 Benign CTU-Honeypot-Cap-7-1 Soomfy Doorlock 1400 8276 139,000
Scenario 22 Benign CTU-Honeypot-Cap-4-1 Phillips HUE 24,000 21,000,000 461,000
Scenario 23 Benign CTU-Honeypot-Cap-5-1 Amazon Echo 5400 398,000,000 1,383,000

3.1.2. Data Preparation

In this section, a comprehensive description of the dataset is presented, encompassing
various aspects such as label matching, dataset extraction, feature extraction, pre-processing,
experiment setup, and results analysis.

CTU-13 Dataset
The converted dataset has been uploaded in a CSV file format named ‘flowdata’,

which has been normalized and standardized based on the CTU 13 dataset.
IoT-23 Dataset
To preprocess the IoT-23 dataset, the process involves loading 16 individual datasets

from the original 23 datasets into a Pandas database. The first 10 rows (headers) are
skipped, and the subsequent 100,000 rows are loaded. Once this process is completed for
all 16 datasets, they are combined to create a new dataset called “IoT23-combined.csv”.

Once the data are loaded using the pandas library’s “read-csv()” function, labeling
becomes necessary. To accomplish this, a function named “labeler()” is employed. The
function iterates through each line of the data, checking the “Label” column, and replacing
the string values with the corresponding labels of 0 and 1, or possibly 0.1 and 2.
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The pre-processing phase involves several crucial steps, including the elimination
of noisy and redundant data, as well as the normalization and transformation of the
dataset. These pre-processing procedures are executed on both the training and testing
data, ensuring consistency and reliability throughout the entire data analysis process.
By removing noise and unused data and by applying appropriate normalization and
transformation techniques, the dataset is prepared to enhance the accuracy and effectiveness
of subsequent data analysis and modeling tasks.

3.1.3. Model Architecture

The following Figure 5 illustrates the architecture of our approach.

Begin

CTU-13 / IoT-23

Data

Pre-Processing  

Standarization Normalization

CTU-13 / IoT-23

Reform the

Data
Resampling

CNN-LSTM Model
Training

CTU-13 / IoT-23

Reform the

Data

Classifier

Testing

Accuracy Precision Recall F1-ScoreEnd

Results

Labels of predicted Data

Figure 5. Architecture of the proposed system.

The Algorithm 1 below shows the CNN-LSTM model we used:

Algorithm 1 Pseudo-code of CNN-LSTM

1: Input the trained data as a CSV file from datasets.
2: Scaling and transforming all the data features for learning.
3: Scaling and transforming all features of the testing data.
4: Using SMOTE for data balancing.
5: Definition of the CNN-LSTM model:
6: | The body of the model (layers)
7: Return model
8: Model ← CNN−LSTM()Model
9: Fitting function

10: Valuation calculation

SMOTE (synthetic minority over-sampling technique) is a data augmentation tech-
nique that commonly uses deep learning to address the problem of class imbalance. Class
imbalance occurs when the number of instances in one class is significantly lower than the
number of instances in another class, leading to biased learning and reduced performance.
The SMOTE technique aims to alleviate class imbalance by synthesizing new instances for
the minority class. Class imbalance can lead to biased models that tend to favor the majority
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class and to perform poorly on the minority class. This is achieved by identifying the near-
est neighbors of each minority class instance and by creating synthetic instances along the
line segments connecting them. This is carried out by taking the difference between feature
values of the instance and its neighbor, multiplying it by a random number between 0 and
1 and adding the result to the instance’s feature values. Therefore, by applying SMOTE to
the botnet detection dataset, we can alleviate the class imbalance issue and can enhance
the model’s ability to detect botnet traffic accurately. The generated synthetic instances
provide additional training examples for the minority class, enabling the deep learning
model to learn from a more balanced dataset and to improve its overall performance.

3.1.4. Model Structures

Our approach consists of two CNN layers, which are separated by Dropout and
followed by an LSTM layer. The configuration and sequence of these layers are visually
depicted in Figure 6 to provide a clearer understanding.

Flatten

Flatten

Inputs

LSTM Layer

Prediction

Sigmoid

Activation

Function

Dense Layers

Convolutional Layers

Convolutional

Layer

Convolutional

Layer

Max

pooling

Layer

Max

pooling

Layer

Figure 6. The structure of the layers used.

To implement the aforementioned architecture, we utilized the internal structure of
the CNN model illustrated in Figure 7.

Figure 7. Internal structure of the proposed CNN model.
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The data were partitioned, allocating 80% for training and 20% for testing. Consistent
methodologies were applied for both training and testing across the two datasets originating
from distinct sources. Given that each model exclusively utilizes either the IoT-23 or CTU-13
dataset, the stratification method was employed to ensure the preservation of the original
distribution of training values, thereby safeguarding against any potential alterations. A
simplified representation of this method is outlined below:

Algorithm 2 below shows the global steps of preprocessing, model architecture, model
training, model evaluation, model testing, and model deployment we used:

Algorithm 2 Global steps of preprocessing, training, testing, and deployment

1: Collect and preprocess the data on botnet related malware samples.
2: Convert the raw data into suitable format for model input.
3: Define the hybrid CNN-LSTM model. (Input layer: Receive preprocessed data,

CNN layer: Extract spatial features from dataset, LSTM layer: Capture temporal
dependencies in the data sequences, Output layer: Perform prediction of botnet or
non-botnet classes).

4: Split the data into training, validation, and test sets.
5: Initialize the model’s neuron weights.
6: Train the model.
7: Pass the training data through the model.
8: Adjust the model weights using gradient backpropagation to minimize prediction error.
9: Repeat these steps on the training data until maximum performance is achieved.

10: Evaluate the model.
11: Use the validation data to assess the model’s performance on unseen data.
12: Measure performance metrics (accuracy, recall, F1-score, etc.).
13: Test the model.
14: Use the test data to evaluate the finale performance of the model.
15: Analyse the results to assess the effectiveness of botnet detection.
16: Utilize the trained model.
17: Apply the model in real-time to detect suspicious botnet activities in new traffic data.
18: Integrate the model into existing botnet detection and security tools to enhance forensics

investigation capabilities.

4. Experimental Results

In this section, we assess the effectiveness of the CNN and LSTM models in terms of
their robustness against underfittingand overfitting, as well as their generalization ability.
This evaluation aims to gauge the model performance and to ascertain their suitability for
broader applications beyond the training data. The confusion matrix can have four different
elements. Some of the commonly used performance metrics [41] for data classification are
discussed below.

True Positive (TP): The classifier accurately identified the attack’s class characteristics.
It implies that a classifier, which is a type of machine learning algorithm, was used to
identify the type of attack that was detected, and that it did so correctly.

True Negative (TN): The value of the class characteristic is negative, i.e., normal traffic.
False Positive (FP): The classifier wrongly classifies normal traffic as an attack.
Faux Negative (FN): The classifier misclassifies an attack record as normal traffic.

4.1. Accuracy (Success Rate)

Accuracy, also known as the success rate, indicates the percentage of normal activities
and attacks that are correctly detected. It is calculated using the ratio between the correct
detection and the total detection. It is calculated as follows:

Accuracy = TP + TN/TP + TN + FP + FN (1)
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4.2. Precision

This metric shows the percentage of detected attacks that are actually real attacks. It is
calculated as follows:

Precision = TP/TP + FP (2)

4.3. False-Positive Rate (FPR)

This indicates the percentage of false alarms, which is obtained by calculating the ratio
between the number of traffic incorrectly classified as intrusions and the total number of
normal traffic. It is calculated as follows:

FPR = FP/TN + FP (3)

4.4. Recall (Detection Rate)

This indicates the percentage of attacks detected compared with all attacks presented
in the dataset. It is the ratio between the number of correctly detected intrusions and the
total number of intrusions, i.e., how many positives the model identified among all possible
positives. It is calculated as follows:

Recall = TP/TP + FN (4)

4.5. F-Score (Harmonic Mean)

The harmonic mean F combines recall and precision into a number between 0 and 1. It
is calculated as the mean of precision and recall, given by

F-Score = 2× (Precision× Recall)/(Precision + Recall) (5)

Table 5 illustrates the training of the CNN model, where the highest accuracy obtained
is 99.7%, and the best fault tolerance result is 0.04%. This was achieved by adding a
convolutional layer and a dropout layer with a dropout rate of 0.5.

Table 5. CNN model training results.

Dataset
Without

Sampling
CallBacks

Random
under

Sampler
SMOTE

SMOTE
Tomek

Borderline
SMOTE

ADASYN

Accuracy
CTU13 0.997520 0.998044 0.971556 0.997805 0.995140 0.993538 0.993538
IoT23 0.952365 0.945287 0.892822 0.896551 0.945287 0.892836 0.896751

Precision
CTU13 0.886515 0.868871 0.195595 0.761460 0.588351 0.701167 0.517816
IoT23 0.736959 0.845727 0.995560 0.995560 0.997780 0.999970 0.999989

Recall
CTU13 0.736959 0.845727 0.995560 0.995560 0.997780 1 1
IoT23 0.991621 1 0.886644 0.890587 1 0.886660 0.890785

F-Score
CTU13 0.804848 0.857143 0.326955 0.862915 0.740222 0.824337 0.682317
IoT23 0.975221 0.971874 0.939904 0.942116 0.971874 0.939912 0.942233

FPR
CTU13 0.000659 0.000892 0.028612 0.002179 0.004879 0.002978 0.006507
IoT23 0.725878 1 0.000437 0.000402 1 0.000455 0.000175

Table 6 displays the training results of the hybrid model. As depicted, an accuracy of
98.74% and a fault tolerance of 0.04% were achieved.

The LSTM model underwent testing, and it took up to 10 h to obtain a result for
a single function. However, since a result for seven or more functions was needed, it
was not a practical choice. Digital forensics investigators need to collect and disclose
evidence quickly, and therefore, time is the most important element. Hence, LSTM was
excluded from the conducted comparison. The experiment results show that using the best
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features reduces the training time and provides a high rate of bot detection. Figures 8 and 9,
illustrates the results obtained from the CNN LSTM model applied to the IoT 23 dataset,
which indicate the presence of loss underfitting. Further analysis and adjustments to the
model training process are required to address the underfitting issue, such as increasing
the model’s complexity, augmenting the training data, applying regularization techniques,
fine-tuning the hyperparameters, utilizing model ensembles, incorporating pretrained
models, expanding the training data size, and implementing early stopping and model
checkpointing. Figures 10 and 11 demonstrate that our approach achieves higher precision
and competitive accuracy.

Table 6. CNN-LSTM model training results.

Dataset
Without

Sampling
CallBacks

Random
under

Sampler
SMOTE

SMOTE
Tomek

Borderline
SMOTE

ADASYN

Accuracy
CTU13 0.997135 0.991959 0.935047 0.987422 0.977201 0.972064 0.972064
IoT23 0.944316 0.889367 0.945266 0.892805 0.962097 0.878699 0.892822

Precision
CTU13 0.872011 0.455946 0.091452 0.330241 0.224216 0.190368 0.195288
IoT23 0.958250 0.995851 0.945288 0.999970 0.154402 0.995798 0.958250

Recall
CTU13 0.688124 0.821310 0.935627 0.790233 0.928968 0.970936 0.930078
IoT23 0.983963 0.886658 0.999976 0.886627 0.996670 0.875372 0.983963

F-Score
CTU13 0.769231 0.586371 0.166617 0.465816 0.361243 0.970936 0.316048
IoT23 0.970936 0.938087 0.971863 0.939894 0.267381 0.931710 0.970936

FPR
CTU13 0.000706 0.006849 0.064957 0.011200 0.022462 0.000892 0.027643
IoT23 0.740679 0.063824 0.999965 0.000455 0.038144 0.063824 0.970936

Figure 8. Accuracy underfitting result of the CNN LSTM model of the IoT 23 dataset.

Initially, a combination of a CNN layer and an LSTM layer, followed by a dropout layer,
was employed, but the obtained results were unsatisfactory. To enhance the performance,
an additional CNN layer was incorporated, which yielded satisfactory outcomes. However,
concerns regarding overfitting and underfitting were observed, as evident from the curves
in Figures 8 and 9. To mitigate these issues, another dropout layer was introduced, leading
to noticeable changes in the observed patterns, as depicted in Figures 10 and 11.
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Figure 9. Loss underfitting result of the CNN LSTM model of the IoT 23 dataset.

Figure 10. Accuracy training and validation.

Figure 11. Loss training and validation.
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Figures 10 and 11 show that the model performs well based on the success rate and
validation loss. The success rate curve is lower than the validation curve, while the loss
curve is higher than the validation loss curve.

Table 7 shows the system performance comparison of the proposed method and
other works.

The metrics shown in Table 7 indicate that our proposed solution outperforms most of
the state-of-the-art works. This method yields a much higher accuracy and fault detection
rates than most of the previous works did on the CTU-13, IoT-23, and other datasets.

By using convolutional layers, pooling layers, fully connected layers, and backprop-
agation, CNNs can effectively learn and extract relevant features and their hierarchical
structure, and can capture local patterns. Furthermore, by combining CNN and LSTM, the
hybrid model can effectively learn and capture long-term dependencies in sequential data.
The gates allow the model to selectively retain or discard malicious information, to update
the memory cell state, and to generate appropriate outputs. This makes the CNN-LSTM
model a well-suited and powerful tool for specific tasks such as malicious traffic classifi-
cation, modern malware recognition, cyber threat intelligence, and other investigations
involving cybersecurity analytics. This study also facilitates forensics analysis to enhance
our understanding of cyber threat intelligence, to identify emerging forms of botnet attacks,
and to enhance digital investigation procedures.

Table 7. Comparative study.

Work Year Method Dataset Accuracy

[42] 2018 PSI Graph CNN Classifier IoTPOT-IotBotnet 92%

[43] 2019 Decision Tree CTU-13 97.54%

[44] 2019 MEFC Real life dataset 87.04%

[45] 2019 Hybrid feature selection NSL-KDD UNSW-NB15 91.27%

[23] 2020 Reinforcement learning ISOT, P2P, ISCX 98.3%

[46] 2021
Representativeness-based

instance selection
KDD Cup 99 94.25%

[47] 2021 Sparse autoencoder
NSL-KDD CIC-IDS2017

AWID
98.10%

[29] 2022 Extreme learning MedBIoT 97.7%

[30] 2023 SVM DT MLP CTU-13 92%

[32] 2023 Active learning MedBIoT 97%

[48] 2023 BiGRU-RNN IoT-bot 97%

Proposed 2023 Hybrid CNN-LSTM
CTU-13
IoT-23

98.74% 98.29%

5. Conclusions

This research attempts to better understand the motivations driving cybercriminals,
the techniques they employ, and the modus operandi behind botnet attacks. The proposed
CNN-LSTM model can capture both spatial and temporal patterns in botnet activities,
leading to improved accuracy in identifying and distinguishing normal network traffic
from complex malicious botnet behavior. This can help reduce false positives and increase
the precision of botnet detection systems. The model is constructed by integrating the CNN
and LSTM layers, utilizing diverse information extracted from multiple scenarios found
in the CTU-13 and IoT-23 datasets. Moreover, the proposed approach has the potential
to operate in real time, enabling timely detection and response to botnet attacks with
flexibility, and the capability to tackle complex and evolving cyber threats. This is crucial in
enhancing cyber threat intelligence and facilitating proactive forensics measures. The results
revealed that adopting the hybrid CNN-LSTM model led to a significant improvement in
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accuracy, yielding highly satisfactory performance outcomes. Our approach achieved an
accuracy rate, exceeding 98% with a false-positive rate of 0.04%. Consequently, this study
enables the model to effectively analyze complex cyber threats that exhibit both spatial
and temporal characteristics, thereby enhancing cyber threat intelligence and facilitating
proactive forensic measures.

In future works, our objective is to explore techniques to improve the robustness
of deep learning models against adversarial attacks in the context of botnet detection.
Adversarial attacks can be used by botnets to evade detection systems, so developing
defenses against adversarial attacks is crucial. This endeavor aims to establish a robust
framework capable of addressing a broader range of cyber threats. Furthermore, we attempt
to explore the use of blockchain to facilitate secure and decentralized sharing of threat
intelligence among different entities. Blockchain can enable the creation of a trusted and
immutable ledger that allows organizations to share information about botnets in real time,
improving the overall detection and mitigation efforts.
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Abbreviations

The following abbreviations are used in this manuscript:

CA Cybersecurity Analytics

CTI Cyber Threat Intelligence

DF Digital Forensics

GDP Gross Domestic Product

OSINT Open-Source INTelligence

AI Artificial Intelligence

DL Deep Learning

LSTM Long Short-Term Memory

CNN Convolutional Neural Network

ML Machine Learning

FNN Feedforward Neural Network

WE Word Embedding

DRNN Deep Recurrent Neural Network

SVM Support Vector Machine

BLSTM Bidirectional Long Short-Term Memory

BiGRU Bidirectional Gated Recurrent Unit

TP True Positive

TN True Negative

FP False Positive

FN False Negative

IRC Internet Relay Chat

https://github.com/adjenna/CNN--LSTM
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P2P Peer-to-Peer

HTTP HyperText Transfer Protocol

PCAP Packet Capture

CSV Comma-Separated Values)

IoT Internet of Things

C&C Command and Control

DDoS Distributed Denial of Service

List of mathematical symbols

X Input data

Y Output

W Weight matrix

b Bias vector

∗ Convolution operation

‖ Concatenation operation

σ Sigmoid activation function

tanh Hyperbolic tangent activation function

⊗ Cross-correlation operation

⊙ Element-wise multiplication

⊕ Element-wise addition operation

∇ Gradient symbol

∂ Partial derivative symbol

θ Model parameters

α Mixing coefficient for combining original and synthetic samples in SMOTE
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